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Relations Between Quality of Urban Runoff and
Quality of Lake Ellyn at Glen Ellyn, lllinois

By Robert G. Striegl and Ellen A. Cowan

Abstract

Comparison of flow and chemical data collected at the
principal inlet and at the outlets of Lake Ellyn—an urban lake
in the Chicago metropolitan area—shows that detention stor-
age alters the discharge and the quality of urban runoff. Peak
water discharge and variation in the concentration of con-
stituents transported by the runoff are usually reduced. Mass-
balance relations based on comparison of measured con-
stituent loads at the inlet and the outlets show that the lake is
very efficient in trapping suspended solids, suspended sedi-
ment, and sediment-associated metals. Calculated trap effi-
ciencies for many dissolved constituents were negative. How-
ever, negative efficiencies appear to be influenced mostly by
insufficient sampling in winter. Trap efficiencies for nitrogen
and phosphorus are intermediate to those determined for other
constituents.

Solids accumulate on the lake bottom as organic-rich
muds that reduce lake storage and cover potential habitat for
aquatic organisms. Lake sediments, particularly fine-grained
sediments, have elevated concentrations of metals associated
with them. Several organic compounds, not detected in inlet-
or outlet-water samples, were detected in a lake-sediment sam-
ple collected near the inlet.

Concentrations of many constituents dissolved in lake
water are seasonally cyclic, with annual concentration peaks
occurring during the winter. Establishment and maintenance of
desirable benthic invertebrate and fish populations appear to
be inhibited by sediment deposition.

INTRODUCTION

Properly managed lakes and ponds are assets to urban
areas. They are pleasant visual features in the urban land-
scape, and they provide sites for recreational activity and
attractive settings for homes and businesses. Areas with
lakes and ponds generally have high real estate values, and
many afford wildlife a refuge from the urban environment.

Lakes and ponds also have practical values of a hydro-
logic nature that often are not recognized by urban dwellers.
Land managers and planners have long known that routing
storm runoff through a lake or pond reduces flooding in
downstream areas (Rutter and Engstrom, 1964; Dunne and
Leopold, 1978; Nacht, 1981). This practice, commonly
called “detention storage,” has also been used to reduce the

amount of sediment transported in runoff from construction
sites. Scientists and engineers have become aware that de-
tention storage may also play an important role in changing
the chemical characteristics of runoff (Cherkauer, 1977,
McCuen, 1980; Oliver and Grigoropoulos, 1981).

The Federal Water Pollution Control Act Amend-
ments of 1972 (Public Law 92-500) set a national goal of
restoring the quality of polluted surface waters and main-
taining them in a clean fishable and swimmable condition.
Section 208 of that law provided funds for the development
of regional water-quality management plans and for investi-
gations to identify and quantify nonpoint sources of pollu-
tion to surface water. These studies indicated a need for
further investigations addressing the problems of nonpoint-
source pollution in urban areas. Consequently, the USEPA
(U.S. Environmental Protection Agency) entered into an
agreement with the U.S. Geological Survey in 1978 and
established the Nationwide Urban Runoff Program. The
study on which this report is based was conducted as part of
that program.

Purpose and Scope

This report is based on data collected from January
1980 to August 1981, at Lake Ellyn, a small lake located in
the western Chicago suburb of Glen Ellyn, Ill. (fig. 1). The
objectives of the Lake Ellyn study were to identify and
quantify water-quality constituents in runoff from a devel-
oped urban watershed, and to evaluate the effect of deten-
tion in Lake Ellyn on concentrations and loads of those
constituents.

The purpose of this report is to describe the effects of
detention storage on the quality of water in and downstream
of Lake Ellyn. Changes in the chemical and sediment char-
acteristics of runoff attributed to detention storage in the
lake are set forth by comparing constituent concentrations
and loads measured at the principal lake inlet with those
measured at the lake outlets. Some effects of runoff on the
physical, chemical, and biological properties of the lake are
described.

This report incorporates relevant information and re-
sults from other studies of runoff detention with information

Introduction 1
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Figure 1. Location and depth contours of Lake Ellyn.
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from Lake Ellyn. The concepts that are discussed are appli-
cable to detention storage in similar physical and climatic
settings.

The authors expect that readers of this report will
represent a wide spectrum of backgrounds and professions.
Therefore, the basic hydrologic concepts upon which data
interpretations were based are explained or referenced as
each topic is presented. Use of technical language and com-
plex mathematics has been intentionally minimized. Many
technical terms that appear in the text are defined in the
glossary.
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Hydrologic Setting

The Lake Ellyn watershed is located approximately
20 miles west of Chicago in Du Page County, Ill. (fig. 1).
Lake Ellyn is a 10.2-acre impoundment constructed in 1889
by building a small earthen dam across a narrow valley and
blocking a tributary to the East Branch Du Page River. The
lake receives drainage from a 534-acre urban watershed
comprising three smaller drainage areas (fig. 2). The main

88°03'38"”

\

AREA

EXPLANATION
RESIDENTIAL LAND USE
COMMERCIAL LAND USE
PARKLAND AND SCHOOL
LAND USE
BOUNDARY OF LAKE
ELLYN WATERSHED

BOUNDARY OF DRAINAGE
AREAS WITHIN LAKE
ELLYN WATERSHED

MAIN INLET
LINDEN INLET

SUBMERGED AND SURFACE
OUTLETS

STORM DRAIN

L—
o pbpen \\\ EED

Figure 2. Drainage areas and land use in the Lake Ellyn watershed (modified from Hey and Schaefer, 1983).
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Table 1. Physiographic and land-use characteristics of the Lake Ellyn watershed

[Modified from Hey and Schaefer, 1983]

Total drainage area, in acCreS.sccsscecescsssnnss tsessescssnsenscsanns 534
Impervious area, in percentage of drainage area@..sscsssssscsssscaccns 34
Average basin slope, in percenticicsecsssces tesestsessastesetrrssennes 4.2
Lake volume, in acre—feet.ccssescesecescosssssonscsnsesnsnnne vresrens 44.8
Inches of runoff required to fill lake€eservervenvessssrrsssrsonnsssnens 1.0
Land use as a percentage of drainage area:
Single-family residentialecesesccsersesosscsssssssasasssasssssens 80
Multiple-family residentialeececesacsosarsresscrssoessssenssosons 3
Commercialecescsereannsvnes R R R R R R R I e 5
Under construction (bare surface)sececsesssssccrsssscssosssssanse 0
Parkland and open Spacscsessss Pesessestaeresrter ettt entannos 7
Institutionalessseseessesessvscenssessonsosssananes ceressnsrensae 5

inlet drainage area is 390 acres and includes downtown Glen
Ellyn; inflow from this drainage area was gaged and sam-
pled during the study. The Linden drainage area is 96 acres,
and the Lake Road drainage area is 48 acres; both areas
drain single-family residential neighborhoods and parkland.
Physiographic and land-use characteristics for the watershed
are summarized in table 1. Of the watershed area, 83 percent
is used for residences, 5 percent is in commercial use, and
the remaining 12 percent is in institutional use, parkland, or
open space (Hey and Schaefer, 1983). There is no undevel-
oped land in the watershed.

Land-surface features near Lake Ellyn were formed
about 14,000 years ago during the retreat of Wisconsinan
glaciers from Illinois. The watershed is mostly underlain by
glacial till consisting of clay and silt with few pebbles and
boulders (Taylor and Gilkeson, 1972). Lake Ellyn is under-
lain by fine-grained glacial lake deposits. The most promi-
nent topographic features of the watershed are kame de-
posits located immediately to the east and southeast of the
lake. Kames are steeply sloping hills composed of stratified
sand and gravel formed when crevasses in the glacier filled
with water-deposited sediment. After the glacial ice melted,
kames remained as areas of high relief on the land surface.

4 Relations Between Quality of Urban Runoff and Quality of Lake Ellyn

Lake Ellyn has a volume of 45 acre-ft, a maximum
depth of 6.4 ft, and a mean depth of 5.0 ft (fig. 1), at a
water-surface elevation of 707.6 ft above sea level. The lake
is clay lined and has a subsurface barrier dam near the
principal inlet (main inlet) that is designed to reduce sedi-
ment transport into the main lake basin (Harza Engineering
Company, 1969). Runoff from 73 percent of the watershed
flows to the lake from main inlet, a 4.0-ft by 4.5-ft rectan-
gular concrete storm drain. Remaining runoff flows to the
lake through six smaller storm drains (fig. 2) and by over-
land flow. Two weirs control the lake water-surface eleva-
tion and outflow (fig. 3). Surface outlet is a 5.25-ft-wide,
fixed concrete weir at the entrance to a cistern that drains
into a 2.0-ft-diam concrete pipe. Submerged outlet is a
6.0-ft-wide, adjustable metal-plate weir in a stilling well
that receives water from a 2.5-ft-diam corrugated-metal pipe
that originates at the lake bottom, near the point of maxi-
mum depth. Submerged outlet is located at the entrance to
a cistern that drains into a 2.5-ft-diam concrete pipe.

The lake is located in a 25-acre park and is surrounded
by grass-covered parkland. Principal benefits derived from
the lake are runoff storage and noncontact recreation, in-
cluding picnicking, fishing, and ice skating.
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Figure 3. Outlet structures at Lake Ellyn.

Climate

The average annual precipitation at Chicago Midway
Airport (20 miles east of Glen Ellyn) for the period from
1928 through 1981 was 24.4 in (National Oceanic and At-
mospheric Administration, 1981). Precipitation is dis-
tributed relatively evenly through the year, but there is less
during the winter months. Much of the summer precipitation
occurs as severe rainstorms of relatively short duration and
high intensity. In northeastern Illinois, 75 percent of the
severe rainstorms occur during June through September
(Huff and Vogel, 1976).

Based on 13 yr of record at Wheaton, Ill., about
3 miles west of Lake Ellyn, the local average annual precip-
itation is 35.6 in deposited in an average of 100 precipitation
periods (National Oceanic and Atmospheric Administra-
tion, 1981). The local, 13-yr average rainfall period had a
duration of 4.6 hr and deposited 0.34 in of water. The
average time between precipitation periods was 83.2 hr.

Precipitation characteristics during the period of study
were similar to those defined by long-term records (Hey and
Schaefer, 1983). Ninety-five rainfall and snowfall periods
were recorded from July 1, 1980, through June 30, 1981,
yielding a total of 39 in of precipitation. The mean precipi-
tation period had a duration of 4.0 hr and deposited 0.4 in
of water. The average time between precipitation periods
was 87.1 hr.

The average annual temperature recorded at Chicago
Midway Airport is 49°F (National Oceanic and Atmospheric
Administration, 1981). Average monthly temperatures
range from a low of 24°F in January to a high of 75°F in

SURFACE OUTLET

Outflow storm drain

Fixed concrete weir™
(707.6 feet above

sea level)

July. Lake Ellyn is usually covered with ice between De-
cember and March.

Methods of Study

This report is based on information compiled during
investigations by several agencies (table 2). Physical char-
acteristics of Lake Ellyn, including size, shape, bathymetry,
and depth of accumulated sediments were determined from
aerial photographs and by direct measurement (Cowan,
1982).

Stages were recorded at 5-min intervals at main inlet,
surface outlet, and submerged outlet from March 1980 to
August 1981 (fig. 1). A servo-manometer was used to meas-
ure stages at main inlet, and float-type gages in stilling wells
were used at the outlets (Buchanan and Somers, 1968).
Stage-discharge relations were determined using methods
from Hulsing (1967), Bodhaine (1968), and Buchanan and
Somers (1968).

Inflow and outflow water samples were collected at
preprogrammed intervals by stage-activated automatic
pumping samplers. As many as 24 samples were collected
at each station for each period of runoff. Specific conduc-
tance and pH were measured for all samples. Selected sam-
ples were analyzed for chemical constituents, sediment con-
centration, and particle-size distribution using methods from
Guy (1969), Goerlitz and Brown (1972), and Skougstad and
others (1979); and methods provided by USEPA to contract
laboratories for priority pollutant analyses (Hey and
Schaefer, 1983). Thirty-three runoff periods were sampled

Introduction 5



Table 2. Agencies involved in data collection for the Lake Ellyn study

Agency

Data collected

Du Page County Regional
Planning Commission

Illinois Department of
Conservation

Illinois State Water Survey

Northeastern Illinois Planning
Commission

Northern Illinois University

U.S. Environmental Protection
Agency

U.S. Geological Survey

Land-use surveys

Fish census

Atmospheric deposition
Benthic invertebrates
Lake-water quality
Lake-sediment quality

Land-use surveys
Road-dirt accumulations
Snow survey

Soil survey

Lake morphology
Lake-sediment quality and quantity

Organic-compound analyses of water
and sediments

Lake-outflow quality and quantity
Lake-sediment quality
Phytoplankton enumeration
Precipitation

Runoff quality and quantity

for chemical constituents and sediment concentrations be-
tween February 1980 and July 1981. Chemical and sediment
loads and mean constituent concentrations were computed
for 18 runoff periods between April 3, 1980, and June 8,
1981. Equations used to compute storm loads and mean
concentrations were derived from Heaney and Huber
(1979).

Precipitation was recorded at S-min intervals through-
out the study period. Volumetric rain gages coupled with
punched-papertape recorders were located at main inlet and
at the outlets.

Samples of lake-bottom sediment were collected by
coring (Cowan, 1982) and by Ekman grab sampler (Hill and
Hullinger, 1981). Grab samples for biological analyses were
washed through a 30-mesh-per-in sieve, and benthic inver-
tebrates were picked from the residue. Methods used for the
chemical and biological analyses of lake sediments are de-

scribed in Skougstad and others (1979), Hill and Hullinger
(1981), Cowan (1982), and Hey and Schaefer (1983).

Diversity and relative abundances of fish species were
assessed in June 1980 using a boat-mounted electroshocker
(Illinois Department of Conservation, written commun,
1980).
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CONCEPTS

The purpose of this section is to present the basic
hydrologic concepts on which the Lake Ellyn study and data
interpretations were based. These concepts are presented
within a general hydrologic framework that contains
specific examples using Lake Ellyn data.

Urban Runoff

Urban runoff is water that flows off the surfaces in
urban areas. It is most commonly thought of as the runoff
that follows rain showers or storms, but it also may include
snowmelt runoff and water discharges from other sources
such as fire-hydrant flushing, lawn watering, and automo-
bile washing.

As water flows over surfaces in an urban watershed,
it collects sediments and chemicals that have been deposited
on or degraded from those surfaces. The number and con-
centration of constituents in the runoff are highly variable
both within and between runoff periods; therefore, predic-
tions of the constituent composition of runoff from urban
areas are difficult to make. Factors that contribute to these
variations include the magnitude, intensity, and duration of
each rainfall; the amount of time that passes between runoff
periods; and the season (Whipple and others, 1977). Intense
rainfalls of long duration tend to wash watershed surfaces
clean of deposited particles and chemicals, and the ensuing
runoff transports them downstream and out of the water-
shed. Alternatively, rainfalls of low intensity or short dura-
tion may produce runoff with only enough energy to move
constituents around within a watershed, resulting in little or
no export of constituents to receiving streams. Increased
time between runoff periods may result in a buildup of
constituents on watershed surfaces. The season of the year
often affects the kind and amount of constituents that are
available for runoff. For example, fertilizers applied to
lawns in spring may contribute to high concentrations of
nitrogen and phosphorus in rainfall runoff. Road-deicing
salt applications in winter contribute to high concentrations
of chloride, sodium, and other dissolved ions in snowmelt
runoff; also, frozen or snow-covered land surfaces in winter
may delay the transport of some sediments and sediment-
associated constituents until spring.

Concentrations of suspended and dissolved con-
stituents respond differently to changes in water discharge
during runoff. Concentrations of suspended constituents
usually increase in response to an increase in discharge.
Increased flow velocity and turbulence result in an increase
in the ability of a stream to suspend and transport particles.
Concentrations of dissolved constituents usually decrease
with an increase in water discharge. Dilution by the in-
creased water volume outweighs the input of dissolved con-
stituents to the streamwater.

These responses are illustrated by rainfall, water-
discharge, and constituent-concentration hydrographs for
July 20-21, 1980, at main inlet (fig. 4). Rainfall occurred
during two discrete periods producing a water-discharge
hydrograph with two main peaks of similar maximum dis-
charge. Suspended-sediment, total-lead, and total-
phosphorus concentrations are used to illustrate relations for
suspended constituents. Dissolved-solids, dissolved-lead,
and chloride concentrations are used to illustrate relations
for dissolved constituents.

Concentrations of suspended constituents were low in
base flow prior to rainfall. As water discharge increased, the
concentration of suspended constituents also increased.
Changes in concentration are directly related to the changes
in water discharge. Peak concentrations of lead and phos-
phorus occurred within 10 min after the start of rainfall,
Similar peaks at the onset of runoff have been observed in
other studies of urban runoff quality (Wilber and Hunter,
1977; Helsel and others, 1979). The second peak on the
suspended-solids hydrograph is reduced approximately
300 mg/1 from the first peak although the peak discharge is
nearly the same. The reduction in suspended-solids concen-
trations is attributed to the accumulated particles having
been washed off streets and other impervious surfaces dur-
ing the first pulse of rainfall (Sartor and Boyd, 1972). Dur-
ing the second pulse of rainfall, fewer solids remain avail-

able to be removed.
Concentrations of dissolved constituents were high in

base flow prior to rainfall. Concentrations decreased at the
start of rainfall because of dilution of base-flow concentra-
tions by rainfall and runoff. With the exception of lead,
dissolved-constituent concentrations continued to decrease
with time throughout the runoff period. The peak in
dissolved-lead concentration at 0010 illustrates the unpre-
dictable variability of constituent concentrations observed in
urban runoff. Concentrations of dissolved lead in that sam-
ple represent the release of a confined source of dissolved
lead from some point in the watershed. The flooding of a gas
station parking lot could possibly cause a concentration of
dissolved lead similar to the one observed.

Detention Storage

Detention storage is the temporary storage of runoff in
a reservoir prior to release to a receiving stream. Water may
drain to a detention lake or pond by way of natural channels,
channelized streams, storm pipes, or overland flow. Deten-
tion reservoirs differ greatly in size and morphometry, and
they range from completely designed and excavated depres-
sions in the ground to natural lakes through which runoff is
directed.

A detention reservoir acts as a widening in a stream
channel, increasing the flow area and allowing incoming

Concepts 7
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runoff to lose velocity with relatively little change in stage.
The flow of water out of detention reservoirs is commonly
regulated by a hydraulic-control device such as a weir or a
siphon. The net result is that the duration of runoff is in-
creased and the magnitude of the peak discharge is de-
creased (fig. 5). For this reason, detention storage has been
used extensively for flood-control purposes (Spieker, 1970).
Because reduction in permeable watershed surface area by
urbanization has the effect of decreasing the duration of
runoff and increasing the magnitude of peak discharge, de-
tention storage often serves to change flow patterns to
resemble conditions before urbanization (Rutter and
Engstrom, 1964).

Outflow from a detention reservoir during a runoff
period consists mostly of water that has been displaced from
the reservoir by the inflowing runoff. This outflow water is
fairly homogeneous in concentrations of water-quality con-
stituents when compared to the inflowing runoff. Concen-
trations of dissolved constituents in the outflow can be
greater than or less than concentrations in the runoff. Fig-
ure 6 shows ranges in concentrations of chloride that were
observed in main inlet and submerged outlet and surface
outlet samples for 20 runoff periods during 1980-81. Dur-
ing winter, chloride from road salt is dissolved in snowmelt
runoff (see fig. 6, Feb. 16, 1981) that flows to the lake and
displaces the more dilute lake water. Chloride from the
snowmelt runoff mixes with the water in the lake, increasing
the chloride concentrations in the lake water. During spring
and summer, rainfall runoff that has low concentrations of
chloride displaces and mixes with the more concentrated
lake water. Chloride concentrations in submerged outlet and
surface outlet samples are consequently greater than those in
main inlet samples, and concentrations tend to decrease
throughout the summer as the lake water becomes more
diluted by rainfall runoff. Outflow concentrations increase
again in the winter with the advent of deicing-salt applica-
tions to road surfaces.

Concentrations of suspended constituents in outflow
from detention reservoirs are generally less than concentra-
tions of suspended constituents in inflowing runoff, depend-
ing on the amount of time that has been available for particle
settling. Figure 7 shows that total-lead concentrations were
less in submerged outlet and surface outlet samples than in
main inlet samples for 20 runoff periods during 1980-81.

The hydraulics of reservoirs for detention of storm
runoff are unique. Flows to and from the reservoirs are
typically surface-water dominated, with little or no flow
between the reservoir and ground water. More noticeably,
inputs of water to detention reservoirs are commonly limited
to relatively short periods of high flows followed by long
periods of little or no flow. Many detention reservoirs re-
ceive water only during precipitation runoff. Inlet and outlet
discharges at Lake Ellyn were typically about 0.1 ft¥/s ex-
cept during precipitation runoff periods such as June 8,
1981, when main inlet flow reached 130 ft%s.

Constituent Loads and Mean Concentrations

The amount or mass of a constituent that is trans-
ported to or from a system, such as a detention reservoir, is
termed “load.” Loads may be calculated for a standard unit
of time (second, day, year), or they may be calculated for
a specific period, such as the period of runoff that follows
a rainstorm.

Because detention reservoirs are surface-water domi-
nated, and the greatest volume of flow to them occurs during
precipitation runoff, estimates of constituent loads to and
from a reservoir can be calculated from discharge and water-
quality measurements made at reservoir inlets and outlets
during runoff periods. Accurate estimates require that dis-
charge be recorded continuously and that water-quality sam-
ples be collected near the beginning, on the rise, near the
peak, and on the tail of the runoff hydrograph. Such meas-
urements were made at main inlet, submerged outlet, and
surface outlet at Lake Ellyn for 30 rainfall-runoff,
3 snowmelt-runoff, and 2 base-flow periods between Febru-
ary 1980 and August 1981.

Load of a constituent for a runoff period is calculated
in a stepwise manner. First, the runoff period is subdivided
into smaller time intervals, each representing a water-
quality sample. Runoff volumes for each time interval are
then determined. Next, concentrations of the constituent
measured in each sample are multiplied by their representa-
tive runoff volumes. The products from the previous step are
then summed, and the total is multiplied by a coefficient that
converts load into the units desired. This is expressed math-
ematically by

L=2(C,Q;At;)107455 | (1)

where L = load, in kilograms;

2 = mathematical notation for a summation;

C; = concentration of constituent in sample i
(collected at time, ¢;), in milligrams per
liter;

Q; = mean discharge during the time interval
representing sample i, in cubic feet per
second;

At; = time interval that represents sample i, con-
centration C;, and mean discharge Q;,
in seconds; and

10733 = coefficient for converting cubic feet to
liters and milligrams to kilograms.
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Figure 5. Water discharges at main inlet and at submerged outlet and surface outlet following rainfall, July 25-26, 1981.
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Figure 7. Ranges of total-lead concentrations at main inlet and at submerged outlet and surface outlet for 20 periods of runoff at

Lake Ellyn, 1980-81.

The summation is calculated over the entire runoff
period from the first sample, i =1, through the last sample,
i=n. The time interval, A, that represents the measured
concentration for a sample collected at time, ¢;, is deter-
mined by adding the amount of time that has passed since
the previous sample (or beginning of runoff) to the amount
of time until the next sample (or end of runoff) and dividing
by 2 (fig. 8). This is expressed by

a =938 )

where a = the amount of time since the previous sample (or
beginning of runoff), in seconds; and
b = the amount of time until the next sample (or end
of runoff), in seconds. _
The time- and flow-weighted mean concentration, C,
of a constituent for a sampled runoff period may be deter-
mined by dividing the calculated load, L, by the product of
the total runoff volume and a coefficient to correct for
changes in units of expression

= L
C= .
2(Q;A1)1074%

3)
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EXPLANATION
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Figure 8. Hypothetical hydrograph showing volumes of runoff that represent individual water-quality samples for
calculation of constituent loads.
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If the goal of sampling is to determine only C, water-
quality analytical costs can be conserved by combining
well-mixed aliquots of several samples collected over the
period represented by a runoff hydrograph into a single
time- and flow-weighted composite sample, from which C
is measured directly. The volume of an individual aliquot,
v;, in the composite sample is equal to the fraction of the
total runoff volume that the aliquot is intended to represent,
multiplied by the total volume of the desired composite
sample, V,,

_ Q;Ay
T 3(Q;AL)

1%

v, . @

When samples are composited by equation 4, the load for a
runoff period can be calculated by rearrangement of equa-
tion 3,

L=C3(Q;At;)107455 5)

Further explanations about the calculation of constituent
loads and mean concentrations may be found in Guy (1969),
Guy and Norman (1970), Porterfield (1972), and Heaney
and Huber (1979).

Mass Balances

A comparison of the load of a constituent that enters
into a system to the load of the same constituent that leaves
the system is called “mass balance.” The mass balance is a
useful method for assessing the net changes of individual
constituent loads in a detention reservoir. In assessing dif-
ferences in loads of a constituent by a mass-balance ap-
proach, it is useful to understand the physical processes that
control the movements of the constituent and to be able to
conceptualize the relative importance of each process.

Water enters or leaves a reservoir or lake by three
major ways: surface water (direct runoff and streamflow),
ground water, and exchange with the atmosphere (precipita-
tion and evaporation). In determining a lake water balance,
all the water inputs to a lake (positive values) for a period
of time are added to all the water outputs from the lake
(negative values) for the same period (fig. 9). If there is no
change in lake volume during that time period, the lake is in
steady state (input equals output) with respect to water, and
the water balance is zero.

Comprehensive water balances, the goals of which
are to determine accurately all the water inputs and outputs
of a lake, are very difficult to construct (Winter, 1981) and
may not be needed to assess detention reservoirs for water-
quality purposes. More approximate water balances, based
only on surface-water data, are adequate in many cases. A
general water balance for a lake is defined by

Sig+Siu +GI+P _Sog _'Sou _GO —-E xAV=0 , (6)

where S, = gaged surface-water inflow volume,
S;. = ungaged surface-water inflow volume,
G; = ground-water inflow volume,
P = volume of precipitation that falls on the lake
surface,
S,. = gaged surface-water outflow volume,
S,. = ungaged surface-water outflow volume,
G, = ground-water outflow volume,
E = volume of evaporation from the lake surface,
and
Av = change in volume of the lake during the time
period for which the calculation is made.

For Lake Ellyn, ground-water interchange was as-
sumed to be negligible, because the water-table surface at
nearby observation wells (fig. 1) was measured to average
about 20 ft below the deepest point in the lake; and because
the lake is clay lined, and it overlies glacial lake deposits
that have low hydraulic conductivities. Precipitation and
evaporation were assumed to be nearly equal and, therefore,
negligible relative to other lake water-balance terms.
Change in lake volume was negligible because flow periods
began when lake water-surface elevations exceeded the
outlet-weir elevation and ended when lake water-surface
elevations returned to the outlet-weir elevation. All surface-
water outflow from Lake Ellyn was gaged. The water-
balance (equation 6) therefore reduced to

Sig +Siu—Sog=0 . M
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Figure 9. Water inputs and outputs for Lake Ellyn water bal-
ance.
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The total runoff volume, Z(Q;At;), in equations 1, 3,
and 5 is equal to S, +S;, for inflow to Lake Ellyn, and to S,
for outflow from the lake.

The movements of suspended solids and most chemi-
cals into and out of a detention reservoir are determined
mainly by the movements of surface water through the reser-
voir. Other sources of constituents such as direct deposition
from the atmosphere or inputs from ground water are usually
less important; however, these sources should not be dis-
counted without justification. Contarinant spills may have
considerable effects on constituent mass balances; however,
such occurrences are unpredictable and, fortunately, rare.
Therefore, volumes of surface water entering, leaving, and
being stored in a detention reservoir and concentrations of
constituents associated with those volumes must be meas-
ured in order to determine constituent mass balances at the
Teservoir.

Trap Efficiencies

The reason for calculating inflow-to-outflow mass
balances at Lake Ellyn was to determine the trap efficiencies
of the lake for retaining constituents measured in runoff. A
trap efficiency is a ratio of the outflow load to the inflow
load of a constituent and is commonly expressed as a per-
centage. A trap efficiency of O percent indicates that inflow
loads are equal to outflow loads and that none of the meas-
ured inflow load is being trapped in the reservoir. A trap
efficiency of 100 percent indicates that all of a particular
constituent measured in inflow is being trapped in the reser-
voir. Negative trap efficiencies may also be calculated;
these indicate that the measured load of a constituent out of
a reservoir is greater than the measured load of that con-
stituent into the reservoir. Since mass must always be con-
served, the probable cause of a calculated negative effi-
ciency must be determined. For several dissolved
constituents in Lake Ellyn runoff, the cause of calculated
negative efficiencies can be traced to inadequate measure-
ment of the inflow load, either because of hydrologic error
in the water balance or because of insufficient water-quality
sampling during low flow and winter. In some instances,
calculation of a negative trap efficiency can be attributed to
desorption or dissolution of a constituent from sediments
deposited in the reservoir. Trap efficiency, in percent, may
be calculated by

R—1L°><100 8
= T (8

i

where R = trap efficiency, in percent;

L, = load of a constituent in outflow; and

L; = load of a constituent in inflow.

Since all the outflow from Lake Ellyn was gaged,
total outflow load, L,, was measured. However, only in-

flow at main inlet was gaged, and runoff to the lake from
other drainage areas in the watershed was unmeasured. To
account for the uncertainty in total inflow load, L;, that may
be attributed to the unmeasured runoff, minimum and max-
imum possible inflow loads were determined and used to
calculate minimum and maximum possible trap efficiencies,
R,.,and R, .

Minimum inflow load, L,,,, to Lake Ellyn was con-
sidered equal to the load measured at main inlet. Therefore,
R,,;, was calculated by substituting L, for L; in equation 8.

Calculation of maximum inflow load, L, , was
based on two assumptions. First, the total volume of inflow
to Lake Ellyn, §;, +S;,, is assumed to be equal to the meas-
ured outflow from the lake, S,,. This is an assumption of
steady state. Second, the concentrations of constituents in
main inlet samples are assumed to be equal to or greater than
constituent concentrations in runoff from ungaged areas (re-
call that downtown Glen Ellyn drains to main inlet). Based
on these assumptions, L,,,. was calcalated from equation 5
using the time- and flow-weighted concentration at main
inlet, C,,,;,, and substituting S, for 2(Q;Ar;),

Linge =ConginS0g 107455 . )

R, Was then calculated by substituting L,,,. for L; in equa-
tion 8.

R,.;» and R,,,, give a range within which the actual trap
efficiency of a detention reservoir will probably lie. They
are reliable estimates for relatively nonreactive constituents
that are input predominantly by surface runoff.

EFFECTS OF LAKE ELLYN ON RUNOFF
QUALITY

Water-quality constituents analyzed in runoff (inflow
and outflow) samples collected at Lake Ellyn have been
grouped into five categories according to similarities in con-
stituent behavior or chemistry (table 3). Discussion of each
category includes description of the constituents, their
sources, and ranges in constituent concentrations between
inlet and outlet samples. Linear regressions are presented to
help quantify relations between constituents that exhibit
close interdependence. Mass balances between inflow and
outflow, and ranges of trap efficiencies for 21 constituents
for 18 runoff periods from April 3, 1980, to June 8, 1981,
are summarized in table 20 (at the end of this report). The
last entries for each water-quality constituent in the table
include the total runoff volume, total load, runoff-weighted
mean concentration, and the overall minimum and maxi-
mum trap efficiencies for the 18 runoff periods. Sampled
runoff periods for which trap efficiency calculations were
made represent a variety of flow conditions and all seasons.
Only periods for which measurements were available were
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Table 3. Categories of water-quality constituents for Lake Ellyn data

Particles in suspension

Solids, suspended Sediment, suspended
Metals and arsenic

Arsenic, total Iron, total

Arsenic, dissolved Iron, dissolved

Cadmium, total Lead, total

Cadmium, dissolved Lead, dissolved

Chromium, total Mercury, total

Chromium, dissolved Mercury, dissolved

Copper, total Zinc, total

Copper, dissolved Zinc, dissolved

Dissolved solids

and major ions

Solids, dissolved Potassium
Calcium Sodium
Chloride Sulfate
Magnesium
Nitrogen and phosphorus
Nitrogen, total Nitrogen, total ammonia
Nitrogen, dissolved Nitrogen, nitrate plus nitrite
Nitrogen, total organic Phosphorus, total
Nitrogen, dissolved organic Phosphorus, dissolved

Organic co

mpounds

Organic pesticides

Solvents

Other organic compounds

used in the calculations. Attempts by others to simulate data
for unsampled flow periods indicated similar results (Hey
and Schaefer, 1983).

Particles in Suspension

Suspended solids and suspended sediments are min-
eral and organic particles in water that are maintained in
suspension by the upward components of turbulent currents,
or that exist in suspension as colloids. The major difference
between the two constituents is analytical (Skougstad and
others, 1979; and Guy, 1969). Suspended-solids concentra-
tions are determined by filtering an aliquot of a larger sam-

ple through a glass-fiber filter and weighing the dried
residue. The analysis does not account for any colloids that
may pass through the filter (Skougstad and others, 1979,
p. 573).

Suspended-sediment concentrations are also deter-
mined by filtration methods. However, the laboratory tech-
nique for the analysis requires that an entire sample be
filtered and that colloids that pass through the filter be ac-
counted for by refiltration, adsorption, or flocculation (Guy,
1969, p. 13). The suspended-sediment determination is
quantitatively more accurate, and measured suspended-
sediment concentrations are often greater than measured
suspended-solids concentrations.
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The relation between suspended-sediment concentra-
tions and suspended-solids concentrations in Lake Ellyn
inflow and outflow samples is shown by the linear regres-
sion line in figure 10. This relation was used to estimate
suspended-sediment concentrations from suspended-solids
concentrations for periods when only suspended-solids data
were available.

Naturally occurring suspended sediment results from
the weathering of rocks and erosion, commonly caused by
running water. Rates of erosion are often accelerated by
construction in urban areas (Wolman and Schick, 1967;
Walling and Gregory, 1970). Exposed soil without protec-
tive cover is easily eroded and transported to streams during
rainfall. In urban watersheds like the Lake Ellyn watershed,
soil erosion may be below natural levels because vegetation
and pavement provide protective cover. However, sus-
pended sediments from urban areas may include particles
that are not found naturally in streams. Water samples col-
lected at main inlet, as well as samples of sediment de-

posited in Lake Ellyn, commonly included pieces of glass,
metal, and construction and packaging materials.

Suspended sediments can affect the chemical quality
of streams by functioning as transport surfaces for heavy
metals and organic molecules. Chemicals adsorb most
strongly to sediment particles that have high surface area to
mass ratios, such as clays. Surfaces of clay particles com-
monly possess a negative charge for the range in pH found
in natural waters, and electrostatic forces cause metal ions
with high positive valences to adsorb to them. Additionally,
surface-tension forces may enhance the adsorption of large
organic molecules to particle surfaces (Stumm and Morgan,
1981, chapter 10).

In areas where flow velocities decrease, sediment par-
ticles settle out of suspension and accumulate on stream
bottoms. In addition to chemical quality effects that may be
caused by adsorbed constituents, these accumulations may
physically bury aquatic organisms, destroy habitat, or cause
stream channels to clog with deposited sediment and debris.
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Figure 10. Relation between suspended-sediment concentrations and suspended-solids concentrations

in samples collected at main inlet and lake outlets.
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Suspended sediments are usually classified by particle
sizes (table 4). A particle-size distribution is a list of the
arelative mass of sediments of different sizes in a water or
sediment sample. Particle-size distributions for water sam-
ples collected at Lake Ellyn are shown in table 5. Sediment
patticles in inlet and outlet samples are mainly silt and clay
size, and many may originate from decomposition of asphalt
and concrete street surfaces (Sartor and others, 1974; Hey
and Schaefer, 1983).

Impervious surfaces, including parking lots, streets,
and driveways, accumulate particles deposited from the at-
mosphere and surrounding land. Atmospheric particles may
originate from industrial areas outside the watershed and
from vehicle exhaust. The particles are transported readily
by suspension in storm runoff.

The rate of settling of particles in suspension may be
theoretically calculated by Stokes’ Law or may be measured
directly in a settling column. Figure 11 compares theoretical
rates of settling of suspended solids to measured rates of
settling for two 40-L samples collected at main inlet and
placed in a 6-ft-tall settling column. The lower envelope of
figure 11 defines the theoretical range of the rates of settling
that was estimated by particle-size distributions. It shows
that, after 4 hr, about 45 percent of the solids could be
expected to settle from the water column. Measured rates
showed that about 95 percent of the solids settled in 4 hr.
This suggests flocculation of the particles, probably due to
high concentrations of clay-size sediment and colloidal or-
ganic material. Particles cohere as chains or clumps that
settle more rapidly than discrete particles.

Settling-column experiments for runoff samples col-
lected from five urban areas in New Jersey (Whipple and
Hunter, 1981) showed that suspended water-quality con-

Table 4. Particle-size classification for sediments
[Modified from Feltz, 1980]

Material Size range

(millimeters)
Boulders More than 256
Cobbles 64-256
Gravel 2-64
Sand 0.062-2
silt 0.004-.062

Clays and colloids Less than 0.004

stituents settled at varying rates that were not proportional to
their concentrations. After a 32-hr period, 50 to 80 percent
of suspended solids, hydrocarbons, and total lead, 20 to
80 percent of total copper and total nickel, and 17 to
36 percent of total zinc settled from a 76-L sample placed in
a 6-ft-tall by 0.75-ft-diam settling column. Their results
support chemical theory for particle settling (Stumm and
Morgan, 1981, chapter 10) by showing that settling rates are
related not only to the concentrations of individual con-
stituents, but also to the overall constituent composition of
the runoff.

The relatively fast settling of solids in Lake Ellyn is
manifested by reductions in concentrations of suspended
solids and suspended sediments between the main inlet and
the outlets (table 6), and by the trap efficiency of the lake for
suspended solids and suspended sediments. Trap-efficiency
calculations (table 20, sections 1 and 2) show Lake Ellyn to
be 88- to 95-percent efficient in trapping suspended solids
and suspended sediment from runoff. This compares to an
84-percent median trap efficiency for suspended sediments
in normal-ponded reservoirs that would be determined for
Lake Ellyn (fig. 12) based on the ratio of lake volume to
annual outlet discharge (Brune, 1953; Gottschalk, 1964).

Metals

Seven metals (cadmium, chromium, copper, iron,
lead, mercury, and zinc) were analyzed in water samples
collected at Lake Ellyn. Minimum, maximum, and mean
concentrations of these metals for sampled runoff periods
are shown in table 7. Although not a metal, arsenic has also
been listed with the metals group and is presented here for
the sake of convenience and because it behaves like a metal
under some chemical conditions.

Iron was the most abundant metal in stormwater en-
tering Lake Ellyn. Iron in the water originates from weath-
ering of iron-bearing minerals in the till and bedrock (Hem,
1970), and from urban sources. During low-flow periods,
iron-oxide floccules of unknown origin were often observed
in the main inlet channel. Rainfall-runoff samples often
included rust particles, apparently originating from vehicles
and debris on the streets. Metal particles too large to be
sampled (75 mm) were transported to the lake as bedload.
Although high, iron concentrations such as those observed
in inflow are generally not detrimental to aquatic life.

Figure 13 shows sources of copper, lead, and zinc that
are deposited on watershed surfaces and are available for
transport by runoff to Lake Ellyn. They include atmospheric
sources that originate from outside the watershed, such as
from industrial areas near Chicago; and sources that origi-
nate from within the watershed including local traffic, disin-
tegration of roads and buildings, chemicals applied to roads
and lawns (road salt, fertilizer), vegetation, and soils. Air-
borne metals may be deposited by rain, snow, and dry
deposition. Hey and Schaefer (1983) estimate that atmos-
pheric deposition contributes 10 percent of the copper,

18 Relations Between Quality of Urban Runoff and Quality of Lake Ellyn



Table 5. Particle-size distributions of suspended sediment in main inlet, submerged outlet,
and surface outlet samples, Lake Ellyn, Illinois, 1980-81

Suspended- Percent suspended
sediment sediment in size class

concentration

Date (mg/1) sand Silt Clay
Main Inlet
May 16, 1980 60 0 8 92
May 17, 1980 14 0 12 88
May 17, 1980 16 0 5 95
May 17, 1980 477 3 67 30
May 28, 1980 1,080 22 57 21
May 28, 1980 568 15 57 28
May 28, 1980 385 10 61 29
May 28, 1980 342 16 53 31
May 28, 1980 264 3 59 38
July 20,21, 1980 261 31 41 28
Aug. 4, 1980 120 14 41 45
July 12, 1981 249 3 50 47
July 13, 1981 138 3 50 47
Aug. 2, 1981 146 2 50 48
Submerged Outlet
May 17, 1980 15 0 12 88
May 28, 1980 25 1 29 70
July 20, 1980 17 3 12 85
Aug. 4, 1980 8 3 18 79
surface Outlet

May 16, 1980 16 3 15 82
May 17, 1980 11 0 12 88
May 17, 1980 14 0 14 86
May 28, 1980 24 3 43 54
July 20, 1980 25 3 17 80
Aug. 4, 1980 10 5 19 76

5 percent of the lead, and 23 percent of the zinc that is
available for transport to the lake. Traffic and the disintegra-
tion of roads and buildings are the major sources of metals
that originate from within the watershed. Hey and Schaefer
(1983) also estimate that traffic-related sources contribute
62 percent of the available copper, 87 percent of the avail-
able lead, and 27 percent of the available zinc. Traffic-
related sources include gasoline, motor oil, tires, and brake
linings (Shaheen, 1975; Solomon and others, 1977; Pitt and
Bozeman, 1980). Concentrations of copper, lead, and zinc
in gasoline and vehicle parts are shown in table 8. The major
source of zinc is attributed to disintegration of roads and
buildings and probably originates from galvanized metal,

nails, and painted surfaces. Chemicals applied to roads and
lawns, vegetation, and soils introduce minor amounts of
copper, lead, and zinc to the watershed.

Most of the metals transported in runoff to Lake Ellyn
are associated with suspended sediments. Relations of total-
copper, total-lead, and total-zinc concentrations to
suspended-sediment concentrations as determined by least-
squares linear regression calculations are shown in figures
14-16. Fo_r samples collected at main inlet, 83 percent of the
variation of total-copper concentrations, 86 percent of the
variation of the total-lead concentrations, and 90 percent of
the variation of total-zinc concentrations can be explained
by variation of suspended-sediment concentrations. As a
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Figure 11. Ranges of measured and theoretical rates of settling
for suspended solids in samples of runoff collected at main
inlet.

consequence of high trap efficiencies for suspended sedi-
ment, trap efficiencies for total metals are also high (table
20, sections 3, 5, 7, 9). Trap efficiencies for dissolved
metals (table 20, sections 4, 6, 8, 10) are less than those
observed for total metals. The —~290 to —650 percent trap
efficiency for dissolved lead indicates that some lead that is
adsorbed to deposited sediment particles may dissolve into
the lake water, or that all of the source of dissolved lead was
not accounted for by sampling at the main inlet.

Cadmium, chromium, arsenic, and mercury were de-
tected in low concentrations in water samples (table 7).
These constituents have been demonstrated to be toxic at
concentrations much greater than those observed in the
water samples from Lake Ellyn (Safe Drinking Water Com-
mittee, 1977).

Dissolved Solids and Major lons

Ranges in concentrations of dissolved solids, cal-
cium, chloride, magnesium, potassium, sodium, and sulfate
in main inlet and outlet samples are listed in table 9.
Specific-conductance measurements were made to estimate
dissolved-solids concentrations in water samples and to se-
lect samples for additional chemical analyses. In all samples
collected at main inlet and the outlets, 98 percent of the

L

5100"I'I"|I N L B
Ll
W 1001
m -
Ll
O gof—
Z
8 60— EXPLANATION
o T LAKE ELLYN
o = ® NORMAL PONDED RESERVOIRS -
é | O NORMAL PONDED RESERVOIRS WITH .
C 40 SLUICING OR VENTING OPERATIONS
- B IN EFFECT |
> — — MEDIAN CURVE FOR NORMAL PONDED
@ 20— |, RESERVOIR —
S , === ENVELOPE CURVES FOR NORMAL PONDED
= [, RESERVOIR -
%0,_.1 .l lLII“IIl

0.001 0.005 0.01 0.05 0.1 05 1 2 3 5710

CAPACITY-INFLOW RATIO,
IN ACRE-FEET CAPACITY PER ACRE-FEET ANNUAL FLOW

Figure 12. Sediment trap efficiency as related to capacity-inflow ratio for normal-ponded reservoirs and Lake

Ellyn (modified from Brune, 1953).
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Table 6. Minimum and maximum concentrations of suspended solids and suspended sediments in main inlet, submerged outlet,
and surface outlet samples, February 21, 1980, to July 13, 1981, in milligrams per liter

Main Inlet Submerged Outlet Surface Outlet
Minimum Maximum Number Minimum Maximum Number Minimum Maximum Number
Constituents concen- concen= of concen- concen- of concen- concen= of
tration tration samples tration tration samples tration tration samples
Suspended 0 3,070 108 0 210 64 0 276 66
solids
Suspended 0 1,817 71 6 75 37 1 35 33
sediments

Table 7. Minimum and maximum concentrations of total and dissolved metals in main inlet, submerged outlet, and
surface outlet samples, February 21, 1980, to July 13, 1981, in micrograms per liter

[<, less than]
Main Inlet Submerged Outlet Surface Outlet
Minimum  Maximum Number Minimum Maximum Number Minimum Maximum Number
Constituents concen=- concen=- of concen= concen= of concen=~ concen= of
tration tration samples tration tration samples tration tration samples

Arsenic, 1 7 51 0 4 39 1 3 41
total

Arsenic, 0 2 51 0 3 40 0 3 41
dissolved

cadmium, 0 4 49 0 1 38 0 6 40
total

Cadmium, 0 4 49 0 7 38 0 6 40
dissolved

Chromium, 10 80 50 10 30 40 10 50 41
total

Chromium, 10 30 50 10 20 40 10 20 41
dissolved

Copper, 2 210 103 1 23 62 2 19 64
total

Copper, 0 120 103 0 8 62 0 6 64
dissolved

Iron, 310 55,000 104 200 2,700 62 160 7,500 64
total

Iron, (] 15,000 104 0 190 62 0 120 64
dissolved

Lead, 2 1,600 100 0 42 62 0 42 64
total

Lead, 0 37 104 0 7 61 0 8 64
dissolved

Mercury, <0.1 0.4 51 <0.1 0.4 39 <0.1 0.5 41
total

Mercury, <0.1 0.4 51 0.1 0.3 40 <0.1 0.4 41
dissolved

2inc, 10 950 106 10 320 61 10 80 64
total

Zine, 4 260 104 0 40 62 0 70 64
dissolved
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variation of dissolved-solids concentrations can be ex-
plained by variation of specific conductance (fig. 17). In
turn, 94 percent of the variation of chloride concen-
trations, 76 percent of the variation of sodium concentra-
tions, 86 percent of the variation of calcium concentrations,

83 percent of the variation of magnesium concentra-

tions, and 83 percent of the variations of sulfate concentra-
tions in rainfall-runoff samples collected at main inlet and
the outlets can be explained by variation of dissolved-solids
concentrations (figs. 18-22). Relations between concentra-
tions of these dissolved ions and dissolved solids in samples
of flow less than 0.5 ft*/s and snowmelt runoff are also
shown in figures 18-22, but these were not included in the
regression calculations.

Dissolved constituents in runoff to Lake Ellyn have
both anthropogenic and geologic sources. Road deicing salt
is the primary source of dissolved solids that enter the lake.
An estimated 230,000 kg of sodium chloride (rock salt)
were applied in the watershed during the winter of 197980,
and 126,000 kg were applied in 1980-81 (Hey and Schae-

fer, 1983). Sodium chloride is about 39 percent sodium and
61 percent chloride by weight. Other salts associated with
deicing include calcium chloride, which may be added to
sodium chloride as a wetting agent to initiate ice melting;
and potassium chloride, which is sometimes used in place of
sodium chloride. Powdered calcium carbonate and magne-
sium carbonate are commonly added to deicing salts as
anticaking agents.

Geologic sources of dissolved ions include calcium
and magnesium contributed by dissolution of local soils,
till, and bedrock. Field observations (G.C. Schaefer, North-
eastern Illinois Planning Commission, oral commun,
1982) indicate that a major contribution to base flow at main
inlet is leakage from water-supply pipes near the village's
water tower. The source of water to that tower is a dolomite
aquifer that has relatively high calcium, magnesium, and
chloride concentrations (Sasman and others, 1981).

Concentrations of dissolved solids and chloride from
samples of snow collected in the Lake Ellyn watershed are
listed in table 10. Greatest concentrations of these con-
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Table 8. Concentrations of copper, lead, and zinc in gasoline
and vehicle parts
[From Shaheen, 1975]

Concentration, in
milligrams per kilogram

Source Copper Lead 2Zinc
Gasoline 4 660 10
Tires 250 1,100 620
Undercoating 1 120 110
Brake linings 31,000 1 120
200 T T T
EXPLANATION

® SAMPLES COLLECTED
Cu = 0.0892 (SED) + 12.4
Percent of variation explained °
by regression (r2) = 0.83
Standard error of estimate =16.1
Number of samples = 83

-
o
o
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Figure 14. Relation between total-copper concentrations
and suspended-sediment concentrations in samples collected
at main inlet.

stituents are found along roads with high traffic densities.
Most roads in the watershed are connected to the lake by
storm drains. Unlike suspended constituents, which require
high velocities and turbulence to be transported in high
concentrations, dissolved constituents can be concentrated
in gradual snowmelt runoff and in low flow. Although
snowmelt runoff and low flow were not sampled exten-
sively, it appears that their contributions to Lake Ellyn were
much greater than had been anticipated during the design of
the sampling program. Because not all dissolved-constituent
contributions were measured, calculated trap efficiencies for
dissolved constituents were negative (table 20, sections 11—
17). This is especially relevant for the winter of 1979-80,
when large amounts of road deicing salts were applied to the
watershed prior to the period of stream sampling.

The effects of unmeasured inputs were observed
throughout 1980. Dilute rainfall runoff during spring and
summer mixes with lake water that has been concentrated
with dissolved constituents during the previous winter. The
resulting outflow has concentrations of dissolved con-
stituents that are greater than those at main inlet, and nega-
tive trap efficiencies for individual rainfall-runoff periods.
In addition to being input with snowmelt runoff and low
flow, calcium and magnesium may also dissolve from lake

2000 I I
EXPLANATION
. ® SAMPLES COLLECTED
gu Pb = 0.721(SED) + 19.6
~ 5 1500— Percent of variation explained ]
g o by regression (r2) = 0.86 L
= g..l Standard error of estimate = 117.5
é P Number of samples = 80 * ¢
E = 1000 —
o<
ox
z0
o0
o
o2 500 —
g =
4=z
o |
o} 500 1000 1500 2000

SUSPENDED-SEDIMENT CONCENTRATION (SED),
IN MILLIGRAMS PER LITER

Figure 15. Relation between total-lead concentrations and
suspended-sediment concentrations in samples collected at
main inlet.
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EXPLANATION
® SAMPLES COLLECTED
Zn = 0.449 (SED) + 60.3
Percent of variation explained
by regression (r2) = 0.90 b
Standard error of estimate=63.1
Number of observations=84
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Figure 16. Relation between total-zinc concentrations and
suspended-sediment concentrations in samples collected at
main inlet.
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Table 9. Minimum and maximum concentrations of dissolved solids and major ions in main inlet, submerged outlet, and surface
outlet samples, February 21, 1980, to July 13, 1981, in milligrams per liter

Main Inlet

Submerged Outlet

Surface Outlet

Minimum Maxirum Number Minimum Maximum Number Minimum Maximum Number
Constituents concen=- concen= of concen- concen- of concen- concen- of

tration tration samples tration tration samples tration tration samples
Dissolved 17 1,290 122 278 1,480 69 261 1,120 70

solids

Calcium 4.5 130 105 23 90 61 24 90 64
Chloride 3.7 700 104 58 650 62 55 440 64
Magnesium 1.3 59 105 14 39 61 13 37 64
Potassium 0.5 8 94 0.2 5.2 53 2.4 8.5 58
Sodium 2.5 460 105 23 380 62 35 260 64
Sulfate 1.6 200 92 35 130 53 35 120 56
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»n % EXPLANATION
e35 SAMPLES COLLECTED =e
o DS = 0.544 (SC) + 22.6
7] = 375 Percent of variation explained —
DI =z by regression (r2} = 0.98
w Standard error of estimate = 42.7
g Number of samples = 195
w
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o

SPECIFIC CONDUCTANCE (SC), IN MICROSIEMENS
PER CENTIMETER AT 25 DEGREES CELCIUS

Figure 17. Relation between dissolved-solids concentrations
and specific conductance in samples collected at main inlet
and lake outlets.

sediments. Conditions for calcium and magnesium dissolu-
tion are most favorable in winter when there are potentially
high carbon-dioxide partial pressures under the ice cover
and long lake-water residence times.

Despite the calculated negative trap efficiencies for
chloride and sodium for individual rainfall-runoff periods,
annual efficiencies are probably close to zero (input equals
output). Annual low concentrations of chloride in lake out-
flow (fig. 23) are nearly the same in consecutive years.
Because the lake volume is essentially constant, and chlo-

ride and sodium enter into few chemical reactions that could
change their total mass in solution, inputs between the times
of low concentrations must be equally balanced with outputs
in order to return to the initial concentration. Calcium and
magnesium concentrations in lake outflow show annual cy-
cles that are similar but less exaggerated than those for
chloride and sodium (fig. 23). Because calcium and magne-
sium have potential sources from road salt and from the
dissolution of sediments, it is not possible to make conclu-
sions about their trap efficiencies that are similar to those
made for chloride and sodium.

Nitrogen and Phosphorus

Nitrogen and phosphorus enter Lake Ellyn dissolved
in runoff and as suspended organic debris—including leaf
litter, grass clippings, and animal feces. Inputs of dissolved
nitrogen and phosphorus are greatest in the spring, corre-
sponding to periods of frequent and intense rainfall, and
lawn-fertilizer application. Minimum and maximum con-
centrations of total and dissolved nitrogen, organic nitrogen,
and phosphorus, total ammonia, and dissolved nitrate plus
nitrite in main inlet, submerged outlet, and surface outlet
samples are listed in table 11.

Trap efficiencies for dissolved and total nitrogen and
phosphorus are listed in table 20, sections 18-21. The trap
efficiencies as listed are conservatively low because they do
not account for inputs of leaf litter from the park surround-
ing Lake Ellyn, or for feces of the many ducks and geese
that inhabit the park near the lake. The 30 to 65 percent
overall trap efficiency for total phosphorus at Lake Ellyn
(table 20, section 20) compares to a 65-percent trap effi-
ciency for total phosphorus measured at Frisco Lake, a
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Figure 18. Relation between chloride concentrations and
dissolved-solids concentrations in samples collected at main
inlet and lake outlets.
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Figure 19. Relation between sodium concentrations and dis-
solved-solids concentrations in samples collected at main
inlet and lake outlets.

5.7-acre impoundment in a park in Rolla, Mo., for a 6-mo
period in 1975 (Oliver and Grigoropoulos, 1981). These
authors also reported trap efficiencies of 22 percent for
organic nitrogen and —30 percent for nitrogen-ammonia at
Frisco Lake (similar calculations were not made for Lake
Ellyn).
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Figure 20. Relation between calcium concentrations and dis-
solved-solids concentrations in samples collected at main
inlet and lake outlets.
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Figure 21, Relation between magnesium concentrations and
dissolved-solids concentrations in samples collected at main
inlet and lake outlets.

Organic Compounds

Bottom-sediment samples collected between main in-
let and the barrier dam (fig. 1), and storm-runoff samples
composited for main inlet and the lake outlets on May 29,
1981, were analyzed by a USEPA contract laboratory for the
129 USEPA priority pollutants. Of the 17 organic com-

Effects of Lake Ellyn on Runoff Quality 25



250 T T T
EXPLANATION

o RAINFALL-RUNOFF SAMPLE, (INCLUDED IN REGRESSION})
= 200  S04=0121(D8) + 243 4 —_
S Percent of variation Aoco o
noc explained by regression o
;E (r2) = 0.83
o3 Standard error of o
Ex 150}— estimate = 10.6 ]
< W Number of samples = 173
F_: " © Low-flow sample ¥
E s A Snowmelt-runoff # o
0< sample
Z& 00 #*(not included __{
o) g in regression)
(8] = r o
wz o
==
g 2 % -~
3 -
(7} A A

A
. | |
(o] 375 750 1125 1500

DISSOLVED-SOLIDS CONCENTRATION (DS),
IN MILLIGRAMS PER LITER

Figure 22. Relation between sulfate concentrations and dis-
solved-solids concentrations in samples collected at main
inlet and lake outlets.

Table 10. Dissolved solids and chloride concentrations in
samples of snow collected in the Lake Ellyn watershed (in
milligrams per liter of melted sample)

[From Hey and Schaefer, 1983]

Curbside
High Medium Low Lake
traffic traffic traffic Ellyn
Constituent areas areas areas Park
Diesolved solids 7,560 6,510 5,490 160
Chloride 4,330 3,750 1,420 9

pounds identified (table 12), 9 were found in the main inlet
sample, 13 were found in the bottom sediment sample, and
2 were detected in the outlet sample. Composite storm-
runoff samples collected on May 17, 1980 (table 13), con-
tained DDD, DDE, DDT, dieldrin, phenols, 2,4,5-TP, and
2-4D in main inlet samples, and phenols, 2,4,5-TP, and
2-4D in outflow. Most organic compounds are probably
associated with fine-grained suspended sediments in runoff
that are deposited in the lake. Dissolved-organic compounds
that are present in the inflow but not in the outflow may be
diluted below analytically detectable concentrations, may
volatilize, or may enter into chemical reactions while in the
lake.

EFFECTS OF RUNOFF ON LAKE ELLYN

Lake Hydrology

Surface runoff from 95 percent of the watershed en-
ters storm drains that empty into the lake. The main inlet
storm drain quickly conveys runoff to the lake and has
discharge hydrographs that peak sharply and are of short
duration (fig. 5). Outlet hydrographs have lower peaks and
are of longer duration. Following heavy rains, inflowing
water appears to have sufficient energy to mix the lake,
preventing prolonged chemical and temperature stratifica-
tion in summer. The difference between inflow and outflow
volumes for a runoff period will temporarily increase lake
storage and cause the lake level to rise. Lake-level fluctua-
tions contribute to bank erosion and may disturb littoral
communities (Moss, 1980).

Deposition of Bottom Sediments

A commonly noticed effect of routing runoff through
detention reservoirs is the deposition of sediments in the
reservoirs. Sediments reduce reservoir volumes and tend to
fill shallow areas near inlets. Dredging is often necessary to
maintain acceptable conditions in detention lakes and
ponds. Barrier dams constructed near inlets can be useful in
reducing transport to downstream areas of reservoirs and in
confining sediment deposition to areas easily accessible for
dredging equipment.
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Figure 23. Concentrations of chloride, sodium, calcium, and
magnesium in the outflow from Lake Ellyn, 1980-81.
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Table 11. Minimum and maximum concentrations of total and dissolved nitrogen and phosphorus in main inlet, submerged
outlet, and surface outlet samples, February 21, 1980, to july 13, 1981, in milligrams per liter

[ND, None detected (<0.01 mg/L]

Main Inlet Submerged Qutlet Surface Outlet
Minimum Maximum Number Minimum Ma ximum Number Minimum Ma ximum Number
Constituents concen- concen= of concen- concen- of concen- concen- of
tration tration samples tration tration samples tration tration samples
Nitrogen, 0.78 26 104 0.77 4.7 62 0.59 5.8 64
total
Nitrogen, <27 5.7 104 22 3.3 62 «24 2.3 63
dissolved
Nitrogen, +27 26 103 .45 3.6 62 .38 5.3 64
total
organic
Nitrogen, .02 4.9 104 ND 3.2 62 ND 1.3 64
dissolved
organic
Nitrogen, ND 1.4 104 2.2 62 ND 1.3 64
total
ammonia
Nitrogen, .02 3.8 103 ND 0.63 62 .01 2 64
nitrate plus
nitrite
Phosphorus, .03 2 103 .08 0.95 62 .02 0.53 64
total
Phosphorus, .01 0.32 104 0.30 62 ND 0.20 64
dissolved

Lake Ellyn was drained and sediments were removed
in 1970. Figure 24 shows the thickness and areal distribution
of sediments in Lake Ellyn in 1980 (Cowan, 1982). A max-
imum sediment thickness of 3.3 ft was measured on the
upstream side of the barrier dam near main inlet. A
13-percent loss in lake storage was calculated for the 10-yr
period with an area-averaged mean sedimentation rate of
0.8 in/yr.

Lake Ellyn sediments were classified as organic-rich
muds (Hill and Hullinger, 1981). Mineral particles in sedi-
ments are transported to the lake mainly in runoff. Organic
material in sediments settles from runoff and is also pro-
duced by biologic activity within the lake. The lake supports
populations of fish, aquatic plants, and plankton that settle
after dying and accumulate as sediment. Bottom sediment
may be resuspended by wind, waves, and high stormwater
discharge to the lake. Feeding and spawning fish also cause
some resuspension of bottom sediments.

Cores of bottom sediments from Lake Ellyn were
collected along transect lines using a BMH-53 sampler (Guy
and Norman, 1970). Particle-size distributions of core sam-
ples were determined by wet sieving for the fraction greater
than 62 pm and by pipet analysis for the fraction less than

62 wm (Guy, 1969). Particle-size distributions of lake sedi-
ments near main inlet, in the center of the lake, and near the
outlets are listed in table 14. Figure 25 is a map of the areal
distribution of mean particle sizes found in Lake Ellyn. The
mean size of bottom-sediment particles decreases with dis-
tance from main inlet due to the reduction in velocity of
inflowing stormwater. The coarsest sediment was deposited
near main inlet; it included broken pieces of brick, glass,
curb, and storm-drain pipe. Sediment in nearshore areas had
a wider mean particle-size range because of erosion of sand
and gravel from the bank. The finest mean particle sizes
were found in the deepest areas of the lake.

Chemicals Associated with Bottom Sediments

The distribution of constituents in bottom sediments is
strongly dependent on particle size (Rickert and others,
1977; Kelly and Hite, 1981). Small particles, such as silt,
clay, and organic particulates, have large surface areas per
unit volume and have many surface sites for adsorbing
chemicals (Feltz, 1980). Mean concentrations of copper,
iron, lead, and zinc in Lake Ellyn bottom sediment were
inversely proportional to the mean particle size of bottom
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Table 12. Concentrations of organic compounds detected in main inlet and combined outlet
water samples, and in bottom sediments, May 29, 1981

[Modified from Hey and Schaefer, 1983; D, detected; ND, none detected; pg/L, micrograms per liter; ng/kg,

micrograms per kilogram)

Concentration
Chemical Inflow Outflow Bottom sediment

characteristic (ug/L) (ug/L) (ug/kg, dry weight)
Acenaphthene ND ND 540
Anthracene 5 2 1,300
Benzo(a)anthracene ND ND 3,800
pDibenzo(a,h)anthracene ND ND 4,200
Benzene D ND ND
Chrysene 4.5 ND 3,400
Fluoranthene 11.5 ND 3,700
Benzo(k)fluoranthene ND ND 14,000
Fluorene ND ND 580
Bis(2-ethylhexyl phthalate) ND ND 690
Phenanthrene 5 2 2,800
Pyrene 9.5 ND 3,000
Benzo(a)pyrene ND ND 12,000
Ideno(1,2,3-cd) pyrene ND ND 15,000
Dichloromethane D ND ND
Tetrachlorethane D ND ND
Toluene D ND ND

Table 13. Concentrations of organic compounds in main inlet,
submerged outlet, and surface outlet water samples, May 17,
1980, in micrograms per liter

[ND, none detected)

Organic Main Submerged surface
compound Inlet Outlet Cutlet
DDD 0.50 ND ND
DDE .06 ND ND
DDT 3.9 ND ND

Dieldrin 31 ND ND
Phenols 2.0 ND 1.0
2,4,5-TP .24 0.06 .08
2,4-D 2.2 57 .74

sediment (fig. 26). This suggests that highest concentrations
of heavy metals will be found in the deep areas of lakes
where the finest sediments are deposited.

A water sample represents only the conditions that
exist during sample collection. If pollutant discharge is in-
termittent or from nonpoint sources, periodic water samples
may have deceptively low concentrations and indicate little
or no pollutant discharge. Alternatively, the chemistry of
sediment collected from lake bottoms can be used to evalu-
ate the historical levels and distribution of trace-metal con-
taminants and persistent organic compounds (Rickert and
others, 1977; Wahlen and Thompson, 1980; and Feltz,
1980). Bottom sediments are often deposited in discrete
layers. Knowledge of the date of deposition and chemistry
of these layers is a useful tool for reconstructing past condi-
tions. For Lake Ellyn sediments, it is not possible to identify
layers; but it is known that the lake was last dredged in 1970.
Deposition of persistent chemicals in the lake since 1970 can
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Table 14. Particle-size distributions of Lake Ellyn bottom-
sediment samples, in percent by weight

[Modified from Cowan, 1982; >, more than; <, less than; um, microme-
ters]

Number of Gravel and sand silt Clay
Location samplee (>62 um) (4-62 m) (<4 pm)
Near Main
Inlet 6 22.7 43.5 33.8
Center of
lake 7 10.8 42.6 46.6
Near
outlet 3 6.3 45.3 48.4
88°03'38" 8870329
T T
Submerged
and surface
a1°53 " |- outlets -
Storm drain
Boathouse

Barnier dam

4°53 02" [—

EXPLANATION
Thickness of
sediment, in feet

0 to 0.50
Storm drain
060 to 0.75
0.75 to 1.00
100 200 fogt
1.00 to 2.00 50  Meters

more than 2.00

Figure 24. Thickness of bottom sediments accumulated in
Lake Ellyn from 1970 to 1980.

therefore be identified by chemical analyses of the sedi-
ments. For example, a concentration of 23 pg of mercury
per kilogram of dried sediment was measured in the Lake
Ellyn sediment sample collected on May 29, 1981, and
table 12 lists eight organic compounds detected in that same
sample. None of these chemicals were present in detectable
quantities in inflow or outflow samples collected that day.

Concentrations of copper, lead, and zinc associated
with lake sediments, road dirt, and street sweepings are
shown in table 15. Road dirt includes those particles that
accumulate on street surfaces and that may be displaced by
traffic. Street sweepings include those particles that accu-
mulate on street surfaces and that may be collected with an

industrial vacuum cleaner (Hey and Schaefer, 1983). The
highest concentrations of lead and zinc were measured along
the roadside in high-traffic areas; concentrations were lower
in areas with less traffic, and in lake sediment. Copper
concentrations were highest in lake sediment, because cop-
per sulfate had been used to control algae in the lake in
previous years. Mean concentrations of cadmium, copper,
iron, lead, and zinc reported in a 1979 survey of the chem-
ical characteristics of sediments from 63 Illinois lakes
(Kelly and Hite, 1981) are lower than concentrations in
Lake Ellyn sediments for cadmium, copper, and lead
(table 16). Copper and zinc concentrations in Lake Ellyn
sediments were within ranges of concentrations reported by
the 1979 survey of Illinois lakes, but mean lead concentra-
tions from Lake Ellyn sediments were more than six times
greater than the maximum survey concentration for lead.

Sediment samples collected near main inlet had a
petroleum-oil coating and odor. Average content of grease
and oil in grab samples collected near main inlet was 2.06
percent of the dry weight of the samples (table 17; fig. 27).
Average content of grease and oil in other samples de-
creased with distance from main inlet. The percent dry
weight of volatile solids in sediments was 16.5 percent near
main inlet and was 13.1 percent in sediment collected in the
middle of the lake and near the outlets.
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Figure 25. Mean particle size of bottom sediments in Lake
Ellyn in 1980.
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Figure 26. Mean concentrations of metals in Lake Ellyn bottom sediments, by particle size (concentrations in
milligrams per kilogram).

Biological Effects of Sediment Deposition

The deposition of solids in Lake Ellyn results in an
organic-rich mud bottom that provides an unsuitable sub-
strate for many rooted plants and benthic invertebrates

(Fassett, 1940; Pennak, 1953). No rooted submergent plants
are present in Lake Ellyn. Three taxa of benthic macroinver-
tebrates (Chaoborus, Chironomidae, and Tubificidae) have
been identified in Ekman grab samples collected from three
locations in Lake Ellyn (fig. 27). Numbers of organisms per
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Table 15. Mean concentrations of copper, lead, and zinc in Lake Ellyn bottom-sediment, road dirt, and street sweepings sam-

ples, in milligrams per kilogram dry weight
[Modified from Hey and Schaefer, 1983; <, less than; pm, micrometer]

Lake Ellyn

Road dirt

Street

bottom sediments High-traffic areas

Medium-traffic areas

Low-traffic areas sweepings

Size fraction Size fraction

Size fraction

Size fraction Size fraction

Silt + clay Silt + clay Silt + clay Silt + clay Silt + clay
Constituent (<63 um) Total (<63 um) Total (<63 um) Total (<63 ym) Total (<63 um) Total
Copper 275 250 131 65 83 42 52 25 77 34
Lead 1,750 1,590 2,130 1,550 1,850 1,310 850 645 1,140 543
Zinc 228 210 605 414 442 217 335 148 472 196

Table 16. Concentrations of cadmium, copper, iron, lead, and zinc in bottom sediments from 63 lllinois lakes and Lake Ellyn
[Modified from Kelly and Hite, 1981; Cowan, 1982; <, less than; <, less than or equal to: N, number of samples]

Concentrations, in milligrams per kilogram dry weight

63 Illinois lakes Lake Ellyn
Mean + 1
standard
N deviation Minimum Maximum N Mean Minimum Maximum
Cadmium 272 <1 <0.5 8 7 4 3 6
Copper 273 42 + 56 3 560 15 250 73 790
Iron 273 27,080 + 8,890 4,300 55,000 15 19,420 3,630 28,000
Lead 273 57 + 43 3 250 15 1,590 410 5,100
Zinc 273 113 + 66 11 750 15 210 3 500

Table 17. Amounts of grease and oil and of volatile solids in
Lake Ellyn bottom sediments
[From Hill and Hullinger, 1981; N, number of samples]

Amount as a percentage of dry weight

Grease Volatile

and oil N solids N
Station 1 2.06 6 16.5 9
Station 2 1.43 6 13.1 9
Station 3 1.26 6 13.1 9

square meter of substrate are listed in table 18. All the
organisms listed have special adaptations for surviving in
soft sediments and are tolerant of anoxic conditions (Hill
and Hullinger, 1981). Single-census electroshocking by the

Hlinois Department of Conservation indicated that six spe-
cies of fish are present in Lake Ellyn (table 19). Of these,
only green sunfish and goldfish reproduce in the lake. Many
of the goldfish sampled were observed to have open sores
on their fins and bodies. Attempts to stock bluegill and
largemouth bass have been unsuccessful. Although stocked
fish have survived, they have not reproduced (Hey and
Schaefer, 1983). Green sunfish and goldfish spawn in shal-
lows where there has been bank reinforcement and where
emergent rooted plants are present. Largemouth bass and
bluegills require coarse sediments in deeper waters for nest
building and spawning (Pflieger, 1975). No such substrate
is present in the limnetic zone of Lake Ellyn (Cowan, 1982).

Effects of Major-lon Inputs

Runoff during winter results in elevated lake-water
concentrations of ions associated with road deicing salts.
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grease and oil in sediments, and for benthic macroinverte-
brates at Lake Ellyn.

Chloride-, sodium-, calcium-, and magnesium-
concentration graphs (fig. 23) for Lake Ellyn show seasonal
cycles with peaks in late winter and troughs in September
and October. Peaks in chloride and sodium concentrations
(fig. 23) can be directly attributed to deicing salt. The use
of calcium chloride as a wetting agent, or calcium and
magnesium carbonates as anticaking agents mixed with de-
icing salts may contribute to the calcium and magnesium

peaks. Long lake-water residence times during winter and
potentially high carbon dioxide partial pressures under ice
cover produce favorable conditions for dissolution of cal-
cium and magnesium from deposited sediments (Stumm and
Morgan, 1981), which may also contribute to the observed
concentration peaks.

Seasonally low, in-lake concentrations of chloride,
sodium, calcium, and magnesium are lower than concentra-
tions found in inlet samples at low flow, indicating dilution
of lake water by storm runoff. This suggests that winter
inputs of these constituents are flushed during spring and
summer and are not causing chemical buildup in lake water.
Increased buildup of deicing-salt chemicals has caused
chemical stratification (meromixis) in other lakes in urban
areas (Judd, 1970; Free and Mulamouttil, 1983). Dissolved
copper, lead, and zinc do not exhibit seasonal concentration
cycles at Lake Ellyn.

Effects of Nitrogen and Phosphorus Inputs

The role of nitrogen and phosphorus in aquatic sys-
tems has been extensively documented in the literature
(Welch, 1952; Clesceri, 1973; and Cole, 1979), and phos-
phorus is often considered to be the nutrient that limits algal
production and eutrophication in lakes (Hutchinson, 1969;
Vallentyne, 1974; Lee and others, 1978; Browman and oth-
ers, 1979). Lake Ellyn has been described as being eu-
trophic since the early 1900's (K.M. Hiatt, long-time Glen
Ellyn resident, oral commun, 1981).

Large nutrient loads in urban runoff undoubtedly con-
tribute to the eutrophic condition of Lake Ellyn. Algal
blooms, although not observed to be frequent, do occur at
the lake. Phytoplankton counts of a single lake-water sam-
ple collected in July 1980 showed Anabaena flos-aquae , a

Table 18. Benthic macroinvertebrates in Lake Eliyn
[Individuals per square meter of substrate; modified from Hill and Hullinger, 1981]

Chaoborus Chironomidae Tubificidae

Date of Station Station Station

sample 1 2 3 1 2 3 1 2 3
Oct. 18, 1979 220 2,670 1,938 431 144 0 72 14 0
Dec. 17, 1979 1,033 1,808 603 1,435 1,119 2,196 144 172 14
Mar. 25, 1980 172 1,593 1,507 287 2,024 3,933 115 603 14
May 28, 1980 86 660 703 57 14 43 345 230 43
July 29, 1980 517 3,818 1,751 14 0 0 86 129 14
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Table 19. Results of 30-minute electrofishing survey of Lake Ellyn, june 10, 1980

[From Illinois Department of Conservation, written commun, 1980]

Number Length, in
Fish species of fish millimeters Comments
Sunfish family (Centrarchidae)

Largemouth bass (Micropterus salmoides) 4 330-368 From previous stocking

Bluegill (Lepomis macrochirus) 17 114~-165 From previous stocking

Green sunfish (Lepomis cyanellus) 32 51-127 Successfully reproducing

Minnow family (Cyprinidae) \

Goldfish (Carassius auratus) 32 140-241 Successfully reproducing,
open sores commonly
observed on fins and body

Carp (Cyprinus carpio) 1 584

Catfish family (Ictaluridae)
Black bullhead (Ictalurus melas) 1 241

nuisance blue-green alga, densities in excess of 600,000
cells per milliliter.

The infrequency of algal blooms that occur at Lake
Ellyn may possibly be attributed to short lake-water resi-
dence times during summer high flows that continually
wash algae out of the lake, and to high concentrations of
suspended sediments in the lake that inhibit light penetration
and photosynthesis below the first few inches of the water
surface (Wang, 1974). However, such conclusions must be
considered to be speculative without supportive data on
algal-biomass production. Study of Lake Houston, a water-
supply reservoir in Texas, led to conclusions that algal
blooms at that reservoir coincide with low-flow periods
when light penetration and reservoir-water residence times
are greatest (Baca and others, 1982).

SUMMARY AND CONCLUSIONS

Trap-efficiency calculations for 18 runoff periods in
1980-81 indicate that detention storage in Lake Ellyn re-
sults in efficient removal of suspended solids, suspended
sediments, and sediment-associated metals from runoff.
These constituents accumulate as lake sediments at an area-
averaged rate of 0.8 in per year and have reduced lake
capacity by 13 percent in 10 yr. Concentrations of cadmium,
copper, lead, and zinc in lake sediments were high relative
to other lakes in Illinois, and were highest in sediments with
the smallest particle diameters. A subsurface barrier dam
located near the lake inlet is effective in reducing transport
of sediments to downstream areas of the lake.

Road deicing salts in snowmelt runoff were the pri-
mary source of dissolved-solids and major-ions input to the
lake. These inputs resulted in seasonal lake-water concen-
tration hydrographs with peaks in winter and troughs in fall.
Calculated trap efficiencies for dissolved solids and major
ions were negative, based on load data for rainfall-runoff
and high snowmelt-runoff periods. However, steady-state
approximations based on concentration hydrographs at the
lake outflow indicate that trap efficiencies are actually about
0 percent. Errors in the calculated trap efficiencies for dis-
solved constituents were probably due to insufficient sam-
pling in winter.

Trap efficiencies for suspended nitrogen and phos-
phorus were less than those for other suspended con-
stituents, and trap efficiencies for dissolved nitrogen and
phosphorus were greater than those for other dissolved con-
stituents. Although nutrient loads to the lake are large, and
Lake Ellyn can be considered to be eutrophic, algal blooms
are infrequent. This may possibly be attributed to short
lake-water residence times during summer that allow algae
to be continually washed out of the lake, and to shallow light
penetration that results from high suspended-solids concen-
trations.

Analyses for USEPA priority pollutants detected
more organic compounds in lake inlet samples than in outlet
samples. Those pollutants detected in outlet samples were
lower in concentration than those in inlet samples. Several
organic compounds were detected in lake sediments that
were not detected in inlet or outlet samples.

Benthic-macroinvertebrate populations are limited to
three taxa that tolerate soft sediments and anoxic conditions.
No rooted submergent plants grow in Lake Ellyn. Sport
fishes that have been stocked in the lake have not repro-
duced.
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GLOSSARY

Adsorption (n).—To take up and hold a substance to a surface of
a solid.

Algal bloom (n).—A high concentration of a particular algal spe-
cies, generally amounting to one half to one million cells or
more per milliliter of water.

Aliquot (n).—An exact part of a larger sample.

Anoxic (adj).—Devoid of oxygen.

Anthropogenic (adj).—Originating from, or caused by, human
activity.

Aquifer (n).—A saturated geologic unit that yields significant
quantities of water to wells and springs.

Base flow (n).—The portion of streamflow that originates from
ground-water discharge.

Bathymetry (n).—The measurement of depth in a surface-water
body.

Bedload (n).—Coarse sediment particles with a relatively fast set-
tling rate that move by rolling and bouncing along the
streambed.

Benthos (n); benthic (adj).—Organisms living in or on the bottom
of an aquatic environment.

Clay (n).—Sediment particles with diameters less than 2 microm-
eters.

Concentration (n).—Amount of a constituent per unit volume or
mass of sample.

Conservative (adj).—Refers to a chemical constituent that remains
dissolved in water and whose net mass in solution is generally
unaffected by physical and chemical processes. Chloride
(Cl7) is a common conservative constituent found in natural
waters.

Constituent (n).—A dissolved or suspended component of a
sample.

Density (n).—The mass of a substance per unit volume. Pure water
has a density of 1.00000 g/mL at 3.98 degrees Celsius.
Detention storage (n).—The temporary storage of runoff in a lake,

pond, or reservoir.

Discharge (n).—The volume of water that flows past a channel
cross-section per unit time.

Dissolved (adj).—Refers to those constituents that can pass
through a 0.45-micrometer filter.

Dolomite (n).—A magnesium-rich carbonate sedimentary rock,
CaMg(CO3)2

Dry deposition (n).—Fallout of particulate matter from the atmos-
phere without the aid of precipitation.

Environment (n).—The sum of all the external physical, chemical,
and biological conditions and influences that affect the life
and development of an organism.

Erosion (n).—The general process or group of processes whereby
the materials of the Earth’s crust are loosened, dissolved, or
worn away, and moved from one place to another by some
force, such as water movement.

Eutrophication (n).—The complex sequence of changes initiated
by the enrichment of lakes and ponds with plant nutrients.
Increased production of photosynthetic plants is followed by
other changes that increase biological production at all levels
of the food chain.

Flocculation (n).—The formation of small, loosely held masses or
aggregates of fine particles suspended in or precipitated from
a solution.

Geologic (n).—Of or pertaining to the Earth.

Ground water (n).—Water in the saturated zone that is under a
pressure equal to or greater than atmospheric pressure.
Habitat (n).—The environment in which an organism or a biolog-

ical population normally lives or occurs.

Hydrograph (n).—A graph showing the stage, flow, velocity, or
other property of water with respect to time.

Inflow (n).—Water discharge into a system, such as a lake.

Invertebrate (n).—An animal without a backbone. Common
aquatic examples include worms, insects, snails, and cray-
fish.

Ion (n).—An electrically charged particle of matter. For example,
in water, salt dissolves to form sodium ions (Na*) with posi-
tive charges, and chloride ions (Cl™) with negative charges.

Least squares linear regression (n).—A statistical procedure for
quantifying the mathematical relation between two or more
variables.

Limnetic zone (n).—The open water zone of a body of water that
receives relatively little influence from the shore or bottom.

Littoral zone (n).—The shallow zone of a body of water where
light penetrates to the bottom.

Load (n).—The amount of mass of a given constituent that is
transported to or from a system during a specific period of
time.

Mass balance (n).—A comparison of the load of a constituent into
a system to the load of that same constituent out of the system
for specific period of time.

Mean concentration (n).—The arithmetic average of observed con-
centrations in a group of samples. In this report, mean con-
centrations are mathematically adjusted to represent the total
discharge during a runoff period.

Meromictic (adj).—Referring to a lake in which some water re-
mains partly or wholly unmixed due to chemical-density gra-
dients.

National Geodetic Vertical Datum of 1929 (NGVD of 1929) (n).—
A geodetic datum derived from a general adjustment of the
first-order levels of both the United States and Canada; re-
ferred to in text as “sea level.”

Nonpoint (adj).—Originating from more than one site or process,
or from a diffuse undefinable source.

Nutrient (n).—Any chemical element, ion, or compound that is
required by an organism for the continuation of growth, repro-
duction, and other life processes.

Organic compounds (n).—Complex molecules whose chemical
structures are based on carbon.

Outflow (n).—Water discharge out of a system, such as a lake.

Overland flow (n).—Precipitation that remains on the surface of
the ground, fills small depressions, and eventually spills over
and flows downslope into lakes and streams.

Partial pressure (n).—The pressure that is exerted by a gas in a
mixture of gases. The total pressure of a mixture of gases,
such as air, is equal to the sum of the partial pressures of each
gas in the mixure.

Particle size (n).—The diameter, in millimeters, of suspended
sediment or bed material determined by either sieve or sedi-
mentation methods. Sedimentation methods determine the ef-
fective fall diameters of particles with respect to spheres of 4
standard density (2.65 g/cm?).
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Particle-size distribution (n).—The listing of the relative mass
(usually percentages) of sediments of different diameters in a
sample.

pH (n).—The negative logarithm of the hydrogen-ion activity,
measured on a scale of 1 to 14, with 1 being most acid, 14
being most basic, and 7 being neutral.

Photosynthesis (n).—The process whereby green plants utilize
light as an energy source and convert chemical compounds to
carbohydrates. In the process, carbon dioxide is consumed
and oxygen is released.

Plankton (n).—The community of suspended, floating, or weakly
swimming organisms that live in open water.

Pollution (n).—Impairment of the natural quality of a resource by
man-caused changes.

Precipitation (n).—The discharge of water, in liquid or solid state,
out of the atmosphere, generally upon land or water surface.

Runoff (n).—Surface-water discharge as a result of drainage off a
land surface.

Sediment (n).—Solid material that originates mostly from disinte-
grated rock and is transported by, suspended in, or deposited
from water; it includes chemical and biochemical precipitates
and decomposed organic material, such as humus.

Specific conductance (n).—A measure of the ability of water to
conduct an electrical current. It is expressed in microsiemens
per centimeter at 25 degrees Celsius.

Specific gravity (n).—The ratio of the mass of solid or liquid to the
mass of an equal volume of pure water at 3.98 degrees
Celsius.

Stage (n).—Water level referred to an arbitrary datum.

Standard error of estimate (n).—A statistic that refers to the inter-
val delineated by a pair of lines that are parallel to, and an
equal distance on each side of, a linear regression line, and
within which 67 percent of the data can be plotted.

Stokes’ Law (n).—A hydrodynamic law relating the settling of
particles in suspension through time.

Stratification (n).—The layering of water in a lake caused by
thermal or chemical gradients.

Substrate (n).—The physical surface upon which an organism
lives.

Surface water (n).—Water on the land surface; oceans, lakes,
ponds, rivers, etc.

Suspended sediment (n).—Sediment that at any given time is
maintained in suspension by the upward components of turbu-
lent currents or exists in suspension as a colloid.

Suspended solids (n).—Particles that at any time are maintained in
suspension by the upward components of turbulent currents or
exist in suspension as a colloid, and that may be retained on
a glass-fiber filter.

Till (n).—Sediment deposited directly by glacial ice.

Total (adj).—Referring to the total amount of a given constituent
in a water-suspended sediment sample, regardless of the con-
stituent’s physical or chemical form.

Trap efficiency (n).—The efficiency of detention storage for re-
taining constituents transported by runoff, in percent.

Water quality (n).—That phase of hydrology that deals with the
kinds and amounts of matter dissolved and suspended in nat-
ural water, the physical characteristics of water, and ecologi-
cal relationships between aquatic organisms and their envi-
ronment.

Watershed (n).—The area drained by, or contributing water to, a
stream, lake, or other body of water.

Water table (n).—The level in the saturated zone at which the
pressure is equal to the atmospheric pressure.

Weathering (n).—The chemical and physical processes by which
rocks are broken down into sediments.

Wisconsinan (n).—The most recent period of significant glacial
activity in the United States, beginning approximately 35,000
years ago and ending 10,000 years ago; sometimes referred to
as the Wisconsin Stage.
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CONVERSION FACTORS

Readers who prefer metric (International System) units of measurement rather than the inch-pound units used in this report may

use the following conversion factors:

Multiply inch-pound unit By To obtain metric unit
inch (in) 25.40 millimeter (mm)
foot (ft) 0.3048 meter (m)
square foot (ft?) 0.09294 square meter (m?)
acre 0.4047 square hectometer (hm?)
or hectare (ha)
cubic foot (ft%) 0.02832 cubic meter (m?)
acre-foot (acre-ft) 1,233 cubic meter (m3)
ounce, avoirdupois (0z) 28.35 gram (g)

«U.S. G.P.0. 1987-181-405:40069
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